

Blessington Car Park Drainage Summary

15 December 2023

Delivering a better world

Quality information

Prepared by	Che	cked by	Verified by		Approved by
Ju		Raf	P	Cin	7 Com
Shaun Fair Graduate Enginee	Pete er Ass	er Shaw ociate Director	Paddy Craig Principal Engir	neer	Paddy Craig Principal Engineer
Revision His	story				
Revision	Revision date	Details	Authorized	Name	Position
Distribution	List				
# Hard Copies	PDF Required	Association	/ Company Name		

Prepared for:

Wicklow County Council, County Buildings, Station Road, Whitegates, Wicklow, A67 FW96, Ireland

Prepared by:

Shaun Fair Graduate Engineer M: +447553328452 E: shaun.fair@aecom.com

AECOM Infrastructure & Environment UK Limited 9th Floor, The Clarence West Building 2 Clarence Street West Belfast BT2 7GP United Kingdom

T: +44 28 9060 7200 aecom.com

© 2022 AECOM Infrastructure & Environment UK Limited. All Rights Reserved¹.

AECOM Infrastructure & Environment UK Limited ("AECOM") has prepared this Report for the sole use of ("Client") in accordance with the terms and conditions of appointment of appointment (Letter of Acceptance) dated 07/09/2019 ("the Appointment").

AECOM shall have no duty, responsibility and/or liability to any party in connection with this report howsoever arising other than that arising to the Client under the Appointment. Save as provided in the Appointment, no warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by AECOM.

This report should not be reproduced in whole or in part or disclosed to any third parties for any use whatsoever without the express written authority of AECOM. To the extent this report is reproduced in whole or in part or disclosed to any third parties (whether by AECOM or another party) for any use whatsoever, and whether such disclosure occurs with or without the express written authority of AECOM, AECOM does not accept that the third party is entitled to rely upon this report and does not accept any responsibility or liability to the third party. To the

¹ This sentence is to be included only where the contract provides that AECOM retains ownership of the deliverables (check the Copyright/Intellectual Property Rights clause of the contract). This sentence should be deleted where the Copyright/Intellectual Property Rights clause of the contract provides that the client owns the deliverables).

extent any liability does arise to a third party, such liability shall be subject to any limitations included within the Appointment, a copy of which is available on request to AECOM.

Where any conclusions and recommendations contained in this report are based upon information provided by the Client and/or third parties, it has been assumed that all relevant information has been provided by the Client and/or third parties and that such information is accurate. Any such information obtained by AECOM has not been independently verified by AECOM, unless otherwise stated in this report. AECOM accepts no liability for any inaccurate conclusions, assumptions or actions taken resulting from any inaccurate information supplied to AECOM from the Client and/or third parties.

Table of Contents

1.	Lackan	1
2.	Baltyboys (Sheet 1)	2
3.	Baltyboys (Sheet 17)	3
4.	Valleymount	4
5.	Russeltown	5
6.	Blessington Greenway & Car Park Summary	7
Appen	idix A	8
A.1	Appendix A1 - Lackan Drainage Layout Drawing	. 8
A.2	Appendix A2 - Baltyboys (Sheet 1) Drainage Layout Drawing	. 9
A.3	Appendix A3 - Baltyboys (Sheet 17) Drainage Layout Drawing	10
A.4	Appendix A4 - Valleymount Drainage Layout Drawing	11
A.5	Appendix A4 – Russeltown Drainage Layout Drawing	12

Figures

Figure 1 – Concept Lackan Pipe Network Details	1
Figure 2 – Concept Baltyboys (Sheet 1) Pipe Network Details	2
Figure 3 – Concept Baltyboys (Sheet 17) Pipe Network Details	3
Figure 4 – Concept Valleymount Pipe Network Details	4
Figure 5 - Concept Russeltown Pipe Network Details	6

1. Lackan

The proposed car park located in the Lackan area requires a surface water drainage collection method of kerb and gullies. There is insufficient contour data to determine if a filter drain is required on the south side of the car park, and so if there is a need in the future, a separate surface water collection system will be developed. As shown in drawing 60617025_SHT_DD_BLGWY_501, the kerb and gullies collecting the surface water connect into the main pipe network running under the car park, which in turn leads to the outfall pipe. The maximum gully spacing in this car park has been calculated to be 27.5m. However, this value has been extrapolated from the surface data available on the west side of this car park due to limitations in the surface data. The design has been developed to minimise the depth of construction where possible, and utilise available space within the carpark. A flow control device is to be located at the manhole upstream of the outlet pipe. This would limit the discharge to the greenfield runoff rate of 2.58 I/s and ensure there is appropriate attenuation of runoff from the proposed impermeable carpark surfaces.

This pipe network is sufficient to provide adequate storage in the network to prevent storm water flooding in the critical 1, 5 and 30 year storm events.

Pipe Numbe	er	US/MH Name	L	Pipe ength (m)	Fall (m)	Slop (1:X	e) A	rea (ha)	Time of Entry (mins)	Base Flow (I/	s) I	Pipe Rough (mm)	n. US/IL (m)	. C.	Height mm)	US/CL (m)	Pip (n	e DIA nm)	Auto Design
2	2.000	M.H.	1	60.232	0.201	29	9.7	0.141	4.0	0		0.6	00 189.8	40	225	191.040		22	5 🔁
	2.001	M.H.	2	31.907	0.638	5	0.0	0.019				0.6	00 189.6	39	225	191.040		22	5 🔁
2	2.002	M.H.	3	18.197	0.064	28	4.3	0.000				0.6	00 185.3	78	1350	191.040		135	0 🔁
	2.003	M.H.	4	30.551	0.076	40	2.0	0.080				0.6	00 185.3	14	1350	190.141		135	0 💣
	2.004	M.H.	5	22.361	0.050	44	7.2	0.078				0.6	00 185.2	38	1350	190.141		135	0 💣
	2.005	M.H.	6	26.577	0.886	3	0.0	0.000				0.6	00 185.1	88	300	187.448		30	0 🐨 _
Pipe Number	Rain (mm/h	r) (mins)	DS/C (m)	L DS/IL (m)	US C.Dep (m)	th C.E	DS Depth (m)	Σ Imp. Area (ha)	Σ Base Flow (l/s)	Foul (I/s)	Ad Flo	dd ow /s)	Pro. Vel (m/s)	Pro. Depth (mm)	Velocity (m/s)	Cap (l/s)	F (low /s)	Rain No.
2.000	50.	00 5.34	191.0	189.6	39 0.9	75	1.176	0.141	0.0	0.0		3.8	0.82	148	0.75	29.8		22.8	1
2.001	50.	00 5.63	191.0	189.0	01 1.1	76	1.814	0.160	0.0	0.0		4.3	1.70	92	1.85	73.7		25.9	1
2.002	50.	00 5.75	190.1	141 185.3	14 4.3	12	3.477	0.160	0.0	0.0		4.3	0.74	81	2.38	3406.7		25.9	1
2.003	50	00 6.01	190.1	141 185.2	38 3.4	53	3.553	0.239	0.0	0.0		0.5	0.73	107	2.00	2862.2		51.9	
2.004	50.	00 6.36	186.0	059 184.3	02 1.9	60	1.457	0.317	0.0	0.0		8.6	2.42	103	2.88	203.7		51.5	1
Pipe Numb	er	U S/MH Name		U S/IL (m)	US/ (m	CL I)	GL 1 (m	1/3 ()	GL 2/3 (m)	US D.Depth (m)		USC	onnection	U	S Access	US/M Diam/L (mm	H .en)	x	US/MH Width (mm)
	2.000	N	I.H. 1	189.84	0 191	.040				0.97	5 O	pen N	lanhole	~ Re	quired 💊	/ 12	200		
	2.001	N	I.H. 2	189.63	9 191	.040				1.17	6 O	pen N	lanhole	Re	quired	12	200		
	2.002	N	I.H. 3	185.37	8 191	.040				4.31	2 0	pen N	lanhole	Re	quired	24	100		
	2.003	N	I.H. 4	185.31	4 190	.141				3.47	7 0	pen N	lanhole	Re	quired	24	100		
	2.004	N	I.H. 5	185.23	8 190	.141				3.55	3 0	pen N	lanhole	Re	quired	24	100		
	2.005	N	I.H. 6	185.18	8 187	.448				1.96	0 0	pen N	lanhole	Re	quired	24	100		
Pipe Numbe	er	DS/MH Name		DS/CL (m)	DS/IL (m)	P	ipe Dl. (mm)	A Pi Lei (I	ipe ngth m)	Fall (m)	D	S Col	nnection	DS	Access	DS/MH Diam/Le (mm)	n,	(DS/MH Width (mm)
2.0	000	M.H	. 2	191.040	189.6	39	22	25 6	0.232	0.201	Ope	en Ma	nhole	Requ	ired	120	0		
2.0	001	M.H	. 3	191.040	189.0	01	22	25 3	1.907	0.638	8 Open Manhole R		Requ	ired	240	0			
2.0	002	M.H	. 4	190.141	185.3	14	135	50 1	8.197	0.064	Ope	en Ma	nhole	Requ	ired	240	0		
2.0	003	M.H	. 5	190.141	185.2	38	135	50 3	0.551	0.076	Ope	en Ma	nhole	Requ	ired	240	0		
2.0	004	M.H	. 6	187.448	185.1	38	135	50 2	2.361	0.050	Ope	en Ma	nhole	Requ	ired	240	0	1	
2.0	005	Outfal	11	186.059	184.3	02	30	00 2	6.577	0.886	Ope	en Ma	nhole	No E	ntry		0	1	

See Appendix A1 for the plan view of the Lackan drainage layout.

Figure 1 – Concept Lackan Pipe Network Details

2. Baltyboys (Sheet 1)

The proposed car park present in the northern part of the Baltyboys area would require a surface water drainage collection method of kerb and gullies, and filter drains. As shown in drawing 60617025_SHT_DD_BLGWY_502, there would be a main pipe running under both sections of the car park. For the impermeable areas of the car park, kerb and gullies are required on the western boundaries of the car park, as this is where the gradient of the surface falls towards. A flow control device would be required upstream of a separate outlet pipe, to limit the flow to the greenfield runoff rate of 1.4 l/s. In addition to this, there would be a filter drain collecting cut slope runoff areas on the eastern boundaries of the car park sections. This would then be discharged to the lake via a separate outlet pipe.

This pipe network is sufficient to provide adequate storage in the network to prevent storm water flooding in the critical 1, 5 and 30 year storm events.

Pipe Numbe	er	U S/MH Name	Pip Leng (m)	e F jth (all m)	Slope (1:X)	Area (ha)	Time of Entry (mins)	Base Flow (I/s)	Pipe Roug (mm	e U h. (S/IL C (m)	. Height (mm)	US/CL (m)	Pipe DIA (mm)	Auto Design
1	1.000	M.H.	1 50.	659	1.747	29.0	0.174	4.00		1.	500 18	35.500	300	187.000	300	8
	1.001	M.H.	2 11.	302	0.038	297.4	0.038			1.	500 1	33.753	300	185.283	300	0
1	2.000	M.H.	3 69.	259	0.346	200.2	0.207	4.00		1.5	500 11	34.800	300	186.324	300	6
	1.002	M.H.	4 22.	000	1.048	21.0	0.000			1.	500 18	33.000	300	186.000	300	8
	3.000	M.H.	5 14.	194	0.083	171.0	0.043	4.00		0.0	600 18	33.561	225	184.986	225	8
	3.001	M.H.	6 43.	266	0.216	200.3	0.080			0.0	600 18	32.066	1050	184.988	1050	8
	4.000	M.H.	7 35.	182	1.675	21.0	0.033	4.00	1	0.0	600 18	84.598	900	186.098	300	8
	3.002	M.H.	8 10.	343	0.383	27.0	0.000			0.0	600 10	81.850	300	184.400	300	8
Pipe Number	Rain (mm/hr)	TC (mins)	DS/CL (m)	DS/IL (m)	US C.Depth (m)	DS C.Depth (m)	Σ Imp. Area (ha)	Σ Base Flow (I/s)	Foul (I/s)	Add Flow (I/s)	Pro. Vel (m/s)	Pro. Depth (mm)	Velocity (m/s)	Cap (l/s)	Flow (l/s)	Rain No.
1.000	50.00	4.33	185.283	183.753	1.200	1.23	0 0.174	0.0	0.0	4.7	1.88	8 8	0 2.5	8 182.4	28.3	1
1.001	50.00	4.56	186.000	183.715	1.230	1.98	5 0.212	0.0	0.0	5.8	0.84	16	9 0.8	0 56.7	34.5	1
2.000	50.00	5.18	186.000	184.454	1.224	1.24	6 0.207	0.0	0.0	5.6	0.97	14	B 0.9	8 69.2	33.6	1
1.002	50.00	5.30	182.572	181.952	2.700	0.32	0 0.419	0.0	0.0	11.4	2.70	11	6 3.0	3 214.4	68.1	1
3.000	50.00	4.24	184.988	183.478	1.200	1.28	5 0.043	0.0	0.0	1.2	0.76	6 6	4 1.0	0 39.6	7.0	1
3.001	50.00	4.53	184.400	181.850	1.872	1.50	0 0.123	0.0	0.0	3.3	0.80	7	1 2.4	3 2105.3	20.1	1
4.000	50.00	4.17	184.400	182.923	1.200	1.17	7 0.033	0.0	0.0	0.9	1.42	2 3	0 3.4	5 243.6	5.3	1
3.002	50.00	4.59	182.586	181.467	2.250	0.81	9 0.156	0.0	0.0	4.2	2.06	6	9 3.0	4 214.7	25.4	1

See Appendix A2 for the plan view of the Baltyboys (Sheet 1) drainage layout.

Pipe Number	U S/MH Name	U S/IL (m)	US/CL (m)	GL 1/3 (m)	GL 2/3 (m)	US D.Depth (m)	US Connection	US Access	US/MH Diam/Len (mm)	x	US/MH Width (mm)
1.0	00 M.H	1 185.5	00 187.00	0		1.200) Open Manhole 🔽	Required ~	1200		
1.00	01 M.H	2 183.7	53 185.28	3		1.230	Open Manhole	Required	1200		
2.00	00 M.H	3 184.8	00 186.32	4		1.224	Open Manhole	Required	1200		
1.00	02 M.H	4 183.0	00 186.00	0		2.700	Open Manhole	Required	1200		
3.00	00 M.H	5 183.5	61 184.98	6		1.200	Open Manhole	Required	1200		
3.00	01 M.H	6 182.0	66 184.98	8		1.872	2 Open Manhole	Required	2100		
4.00	00 M.H	7 184.5	98 186.09	8		0.600	Open Manhole	Required	1200		
3.0	02 M.H	8 181.8	50 184.40	0		2.250	Open Manhole	Required	2100		
Pipe Number	DS/MH Name	DS/CL (m)	D S/IL (m)	Pipe DIA (mm)	Pipe Length (m)	Fall (m)	DS Connection	DS Access	DS/MH Diam/Len (mm)	x	D S/MH Width (mm)
1.000	M.H. 2	185.283	183.753	300	50.659	1.747	Open Manhole	Required	1200		
1.001	M.H. 4	186.000	183.715	300	11.302	0.038	Open Manhole	Required	1200		
2.000	M.H. 4	186.000	184.454	300	69.259	0.346	Open Manhole	Required	1200		
1.002	Outfall 1	182.572	181.952	300	22.000	1.048	Open Manhole	No Entry	0		
3.000	M.H. 6	184.988	183.478	225	14.194	0.083	Open Manhole	Required	2100		
3.001	M.H. 8	184.400	181.850	1050	43.266	0.216	Open Manhole	Required	2100		
4.000	M.H. 8	184.400	182.923	300	35.182	1.675	Open Manhole	Required	2100		
3.002	Outfall 2	182.586	181.467	300	10.343	0.383	Open Manhole	No Entry	0		

Figure 2 – Concept Baltyboys (Sheet 1) Pipe Network Details

3. Baltyboys (Sheet 17)

The proposed car park in the southern part of the Baltyboys area would require the use of kerb and gullies to collect the surface water. Pipes 1.001 and 1.002 both take in impermeable surface water runoff and verge runoff. As illustrated in drawing 60617025_SHT_DD_BLGWY_503, the outfall pipe then transfers this water into the lake at a controlled greenfield runoff rate of 4.55 l/s. Therefore, a flow control device would be required upstream of the outlet pipe. A high-level calculation of the gully spacing has given a value of 29.12m and 26.3m, as noted in the drawing. In total, there is proposed to be 3 gullies in this catchment area. This pipe network is sufficient to provide adequate storage in the network to prevent storm water flooding in the critical 1, 5 and 30 year storm events.

See Appendix A3 for the plan view of the Baltyboys (Sheet 17) drainage layout.

Pipe Number	U S/MH Name	Pipe Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Time of Entry (mins)	Base Flow (I/s)	Pipe Rough. (mm)	U S/IL (m)	C. Height (mm)	US/CL (m)	Pipe DIA (mm)	Auto Design
1.000	M.H. 1	13.720	1.372	10.0	0.024	4.00		0.600	185.704	225	187.204	225	ð
1.001	M.H. 2	64.025	0.233	274.8	0.133			0.600	183.400	900	186.434	900	ð
1.002	М.Н. 3	44.531	0.891	50.0	0.000			0.600	183.167	225	184.983	225	0

Pipe Number	Rain (mm/hr)	TC (mins)	DS/CL (m)	DS/IL (m)	US C.Depth (m)	DS C.Depth (m)	Σ Imp. Area (ha)	Σ Base Flow (I/s)	Foul (I/s)	Add Flow (I/s)	Pro. Vel (m/s)	Pro. Depth (mm)	Velocity (m/s)	Cap (I/s)	Flow (I/s)	Rain No.
1.000	50.00	4.05	186.434	184.332	1.275	1.877	0.024	0.0	0.0	0.6	1.75	24	4.16	165.5	3.9	1
1.001	50.00	4.62	184.983	183.167	2.134	0.916	0.157	0.0	0.0	4.2	0.78	89	1.89	1199.4	25.5	1
1.002	50.00	5.02	183.099	182.276	1.591	0.598	0.157	0.0	0.0	4.2	1.69	91	1.85	73.7	25.5	1

Pipe Number	U S/MH Name	U S/IL (m)	US/CL (m)	GL 1/3 (m)	GL 2/3 (m)	US D.Depth (m)	US Connection	US Access	U S/MH Diam/Len (mm)	x	U S/MH Width (mm)
1.000	M.H. 1	185.704	187.204			1.275	Open Manhole	Required	1200		
1.001	M.H. 2	183.400	186.434			2.134	Open Manhole	Required	1800		
1.002	M.H. 3	183.167	184.983			1.591	Open Manhole	Required	1800		

Pipe Number	DS/MH Name	DS/CL (m)	DS/IL (m)	Pipe DIA (mm)	Pipe Length (m)	Fall (m)	DS Connection	DS Access	DS/MH Diam/Len (mm)	x	DS/MH Width (mm)
1.000	M.H. 2	186.434	184.332	225	13.720	1.372	Open Manhole	Required	1800		
1.001	M.H. 3	184.983	183.167	900	64.025	0.233	Open Manhole	Required	1800		
1.002	Outfall 1	183.099	182.276	225	44.531	0.891	Open Manhole	No Entry	0		

Figure 3 – Concept Baltyboys (Sheet 17) Pipe Network Details

4. Valleymount

The proposed car park in the Valleymount area would require a surface water drainage collection method of kerb and gullies. The kerb and gullies would be located along the western and northern part of the car park. The proposed drainage design, including gully and carrier drain outline, is shown on drawing 60617025_SHT_DD_BLGWY_504. A flow control mechanism (Hydro-brake) is necessary upstream of the outfall pipe in the network, to limit the discharge to a greenfield runoff rate of 0.84 l/s.

In addition to this, due to a significant area of runoff coming from the Southeast area, a filter drain is necessary on the southern edge of the site, collecting runoff falling towards the carpark from the surrounding area. This land drain is kept separate until close to the outfall point which is downstream of the flow control mechanism.

See Appendix A4 for the plan view of the Valleymount drainage layout.

Pipe Number	U S/MH Name	Pipe Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Time of Entry (mins)	Base Flow (I/s)	Pipe Rough. (mm)	U S/IL (m)	C. Height (mm)	US/CL (m)	Pipe DIA (mm)	Auto Design
2.000	M.H. 1	14.337	0.287	50.0	0.010	4.00		0.600	182.880	900	184.380	225	ð
3.000	M.H. 2	32.461	0.271	119.8	0.046	4.00		0.600	183.042	300	184.542	300	ð
2.001	M.H. 3	19.914	0.148	134.6	0.013			0.600	180.687	1050	184.284	1050	ð
2.002	M.H. 4	5.195	0.024	216.5	0.000			0.600	180.539	375	182.779	375	6
4.000	M.H. 5	33.229	0.323	102.9	0.054	4.00		0.600	181.900	300	183.400	300	ð
4.001	M.H. 6	5.350	0.052	102.9	0.000			0.600	181.577	300	184.882	300	6
4.002	M.H. 7	39.761	0.386	103.0	0.000			0.600	181.525	300	184.682	300	ď

Pipe Numbe	r (mm/hr)	TC (mins)	DS/CL (m)	D S/IL (m)	US C.Depth (m)	DS C.Depth (m)	Σ Imp. Area (ha)	Σ Base Flow (l/s)	Foul (I/s)	Add Flow (I/s)	Pro. Vel (m/s)	Pro. Depth (mm)	Velocity (m/s)	Cap (l/s)	Flow (I/s)	Rain No.
2.	50.00	4.13	184.284	182.593	1.275	1.466	0.010	0.0	0.0	0.3	0.76	23	1.86	73.8	1.6	1
3.	50.00	4.38	184.284	182.771	1.200	1.213	0.046	0.0	0.0	1.3	0.85	55	1.44	101.5	7.5	1
2.	50.00	4.49	182.779	180.539	2.547	1.190	0.069	0.0	0.0	1.9	0.77	48	2.97	2571.2	11.2	1
2.	50.00	4.56	182.833	180.515	1.865	1.943	0.069	0.0	0.0	1.9	0.75	72	1.23	135.6	11.2	1
4.	50.00	4.36	184.882	181.577	1.200	3.005	0.054	0.0	0.0	1.5	0.94	57	1.55	109.6	8.8	1
4.	50.00	4.41	184.682	181.525	3.005	2.857	0.054	0.0	0.0	1.5	0.94	57	1.55	109.6	8.8	1
4.	50.00	4.84	182.833	181.139	2.857	1.394	0.054	0.0	0.0	1.5	0.94	57	1.55	109.5	8.8	1

Pipe Number	U S/MH Name	U S/IL (m)	US/CL (m)	GL 1/3 (m)	GL 2/3 (m)	US D.Depth (m)	US Connection	US Access	US/MH Diam/Len (mm)	x	U S/MH Width (mm)
2.000	M.H. 1	182.880	184.380			0.600	Open Manhole	Required	1200		
3.000	M.H. 2	183.042	184.542			1.200	Open Manhole	Required	1200		
2.001	M.H. 3	180.687	184.284			2.547	Open Manhole	Required	2100		
2.002	M.H. 4	180.539	182.779			1.865	Open Manhole	Required	2100		
4.000	M.H. 5	181.900	183.400			1.200	Open Manhole	Required	1200		
4.001	M.H. 6	181.577	184.882			3.005	Open Manhole	Required	1200		
4.002	M.H. 7	181.525	184.682			2.857	Open Manhole	Required	1200		

Pipe Number	DS/MH Name	DS/CL (m)	D S/IL (m)	Pipe DIA (mm)	Pipe Length (m)	Fall (m)	DS Connection	DS Access	DS/MH Diam/Len (mm)	x	DS/MH Width (mm)
2.000	M.H. 3	184.284	182.593	225	14.337	0.287	Open Manhole	Required	2100		
3.000	M.H. 3	184.284	182.771	300	32.461	0.271	Open Manhole	Required	2100		
2.001	M.H. 4	182.779	180.539	1050	19.914	0.148	Open Manhole	Required	2100		
2.002	Outfall 1	182.833	180.515	375	5.195	0.024	Open Manhole	No Entry	0		
4.000	M.H. 6	184.882	181.577	300	33.229	0.323	Open Manhole	Required	1200		
4.001	M.H. 7	184.682	181.525	300	5.350	0.052	Open Manhole	Required	1200		
4.002	Outfall 2	182.833	181.139	300	39.761	0.386	Open Manhole	No Entry	0		

Figure 4 – Concept Valleymount Pipe Network Details

5. Russeltown

The proposed car park in the Russeltown area would require a surface water drainage collection method of kerb and gullies. The kerb and gullies would be situated along the western and northern part of the car park. The proposed drainage design, including gully and carrier drain outline, is shown on drawing 60617025_SHT_DD_BLGWY_505. A flow control mechanism (Hydro-brake) is necessary upstream of the outfall pipe in the network, to limit the discharge to a greenfield runoff rate of 1.9 l/s.

In addition to this, due to a significant area of runoff coming from the road and surrounding area on both the west and south side area of the car park, a filter drain is necessary on the western and southern edge of the site, which will collect runoff falling towards the carpark from this surrounding area. This land drain is kept separate until close to the outfall point which is downstream of the control mechanism.

See Appendix A5 for the plan view of the Russeltown drainage layout.

Pipe Numbe	er	U S/MH Name	Pip Leng (m	e F gth ()	all m)	Slope (1:X)	Area (ha)	Time of Entry (mins)	Base Flow (I/s)	Pipe Roug (mm	e U jh. (S/IL C. m)	. Height (mm)	US/CL (m)	Pipe DIA (mm)	Auto Design
1	1.000	10	1 19	.613	0.136	144.2	0.064	4.00		0.	600 18	2.508	900	184.732	900	8
1	1.001	1	2 90	.121	0.300	300.4	0.086			0.	600 18	2.372	900	184.483	900	
1	1.002	3	3 41	.830	0.150	278.9	0.033			0.	600 18	2.072	900	184.556	900	8
-	2.000		4 15	.652	0.144	109.1	0.022	4.00		0.	600 18	2.590	300	184.090	300	8
	1.003		4 6	637	0.246	27.0	0.000			0.	600 18	1.000	300	184.022	300	A
	3 000		6 23	775	0 132	180.1	0.044	4.00		0	600 18	2 596	225	184 021	225	
	3 004		7 23	907	0.002	260.0	0.030	4.00		0.	600 10	2.550	225	404 400	225	-
-	2.002		2.3	742	0.092	200.0	0.029			0.	000 10 600 40	2.404	225	104.190	220	-
	5.002		5 25	./12	0.099	200.0	0.000			0.	600 18	2.312	225	185.000	225	
	3.003		9 78	.708	0.262	300.0	0.058			0.	600 18	2.198	300	185.000	300	0
3	3.004	1	0 39	.833	0.133	300.0	0.028			0.	600 18	1.936	300	185.295	300	ď
4	4.000	1	1 16	.422	0.328	50.0	0.011	4.00		0.	600 18	3.391	225	184.974	225	ð
3	3.005	1	1 14	.565	0.520	28.0	0.000			0.	600 18	1.000	300	184.488	300	6
1	1.004	1	3 9	.281	0.079	116.8	0.000			0.	600 18	0.480	300	182.000	300	6
Pipe Number	Rain (mm/hr)	TC (mins)	DS/CL (m)	D S/IL (m)	US C.Depth (m)	DS C.Depth (m)	Σ Imp. Area (ha)	Σ Base Flow (I/s)	Foul (I/s)	Add Flow (l/s)	Pro. Vel (m/s)	Pro. Depth (mm)	Velocity (m/s)	Cap (l/s)	Flow (I/s)	Rain No.
1.000	50.00	4.13	184.483	182.372	1.324	1.21	1 0.064	0.0	0.0	1.7	0.76	50	2.61	1658.7	10.4	1
1.001	50.00	4.96	184.556	182.072	1.211	1.58	4 0.150	0.0	0.0	4.1	0.75	89	1.80	1146.7	24.3	1
1.002	50.00	5.33	184.022	181.922	1.584	1.20	0 0.183	0.0	0.0	5.0	0.82	96	1.87	1190.5	29.7	1
2.000	50.00	4.17	184.022	182.446	1.200	1.27	6 0.022	0.0	0.0	0.6	0.71	38	1.51	106.4	3.6	1
1.003	50.00	5.37	182.000	180.754	2.722	0.94	6 0.205	0.0	0.0	5.6	2.23	79	3.04	1 214.7	33.3	1
3.000	50.00	4.41	184.198	182.464	1.200	1.50	9 0.044	0.0	0.0	1.2	0.75	66	0.97	38.6	7.2	1
3.001	50.00	4.90	185.000	182.372	1.509	2.40	3 0.073	0.0	0.0	2.0	0.75	95	0.81	32.1	11.9	1
3.002	50.00	5.43	185.000	182.273	2.403	2.50	2 0.073	0.0	0.0	2.0	0.75	95	0.81	32.1	11.9	1
3.003	50.00	6.89	185.295	181.936	2.502	3.05	9 0.131	0.0	0.0	3.6	0.81	119	0.90	63.8	21.3	1
3.004	50.00	7.62	184.488	181.803	3.059	2.38	5 0.159	0.0	0.0	4.3	0.86	133	0.90	63.8	25.8	1
4.000	50.00	4.15	104.488	103.003	1.358	1.20	0 0.011	0.0	0.0	0.5	0.77	24	1.8	240.0	1./	
1.004	50.00	7.10	182.000	180,480	1 220	1.22	0 0.170	0.0	0.0	4.0	2.08	15	2.90	210.8	60.0	
1.004	50.00	1.01	102.000	100.400	1.220	1.30	0.375	0.0	0.0	10.2	1.51	100	1.40	102.0	00.9	

Pipe Number	U S/MH Name	U S/IL (m)	US/CL (m)	GL 1/3 (m)	GL 2/3 (m)	US D.Depth (m)	US Connection	US Access	U S/MH Diam/Len (mm)	x	US/MH Width (mm)
1.000	1	182.508	184.732			1.324	Open Manhole	Required	1800		
1.001	2	182.372	184.483			1.211	Open Manhole	Required	1800		
1.002	3	182.072	184.556			1.584	Open Manhole	Required	1800		
2.000	4	182.590	184.090			1.200	Open Manhole	Required	1200		
1.003	4	181.000	184.022			2.722	Open Manhole	Required	1800		
3.000	6	182.596	184.021			1.200	Open Manhole	Required	1200		
3.001	7	182.464	184.198			1.509	Open Manhole	Required	1200		
3.002	8	182.372	185.000			2.403	Open Manhole	Required	1200		
3.003	9	182.198	185.000			2.502	Open Manhole	Required	1200		
3.004	10	181.936	185.295			3.059	Open Manhole	Required	1200		
4.000	11	183.391	184.974			1.358	Open Manhole	Required	1200		
3.005	11	181.000	184.488			3.188	Open Manhole	Required	1200		
1.004	13	180.480	182.000			1.220	Open Manhole	Required	1200		

Pipe Number	D S/MH Name	DS/CL (m)	D S/IL (m)	Pipe DIA (mm)	Pipe Length (m)	Fall (m)	DS Connection	DS Access	DS/MH Diam/Len (mm)	x	DS/MH Width (mm)
1.000	2	184.483	182.372	900	19.613	0.136	Open Manhole	Required	1800		
1.001	3	184.556	182.072	900	90.121	0.300	Open Manhole	Required	1800		
1.002	4	184.022	181.922	900	41.830	0.150	Open Manhole	Required	1800		
2.000	4	184.022	182.446	300	15.652	0.144	Open Manhole	Required	1800		
1.003	13	182.000	180.754	300	6.637	0.246	Open Manhole	Required	1200		
3.000	7	184.198	182.464	225	23.775	0.132	Open Manhole	Required	1200		
3.001	8	185.000	182.372	225	23.897	0.092	Open Manhole	Required	1200		
3.002	9	185.000	182.273	225	25.712	0.099	Open Manhole	Required	1200		
3.003	10	185.295	181.936	300	78.708	0.262	Open Manhole	Required	1200		
3.004	11	184.488	181.803	300	39.833	0.133	Open Manhole	Required	1200		
4.000	11	184.488	183.063	225	16.422	0.328	Open Manhole	Required	1200		
3.005	13	182.000	180.480	300	14.565	0.520	Open Manhole	Required	1200		
1.004		182.000	180.400	300	9.281	0.079	Open Manhole	No Entry	0		

Figure 5 - Concept Russeltown Pipe Network Details

6. Blessington Greenway & Car Park Summary

In accordance with DN-DNG-03062 Section 9, over the edge drainage is proposed for the greenway, where the runoff is collected in a ditch and then discharged into the lake. Over the edge drainage is recommended for all embankments above 1.5m in height. Careful consideration must be paid to avoid channelized flow down the embankment without sufficient protection. This could occur in locations where:

- Inconsistent rounding of the embankment crest does not allow uniform sheet flow runoff.
- Concentrated flow bypassing terminal gully/outlet or kerb/barrier termination.

If concentrated flow over the embankment is unavoidable, suitable measures to protect the embankment from scour shall be incorporated.

As per DN-DNG-0362 section 9.3, over the edge drainage is not appropriate in areas of the greenway where there may be structures across rivers or junctions.

As per DN-GEO-03047 Section 4.7 'Over the Edge Drainage', the verge on either side of the cycleway must be constructed with a crossfall of no more than 10% so as not to destabilise an errant cyclist. If junctions form part of the design, then other drainage facilities will be designed. Where this occurs, surface drainage shall intercept runoff that may accumulate at these constrained locations, this may include a longitudinal grated or slotted linear drainage channel.

Appendix A

A.1 Appendix A1 - Lackan Drainage Layout Drawing

Filename: \\EU.AECOMNE PROFILESF.DV Last saved by: F

20 SPACES + 4 ACCESSIBLE SPACES **PICNIC AREA** PICNIC TABLES TO BE PROVIDED IN LINE WITH DN-GEO-03047 TABLE 6.1 LEVEL 2 PROVISION. **3 PICNIC TABLES EACH SEATING 4 PEOPLE.** FINAL LOCATION AND ORIENTATION TO BE CONFIRMED KNOCKIEREN CAR PARK REPLACEMENT TREES TO BE PLANTED IN THIS AREA 1200mm Ø M.H ELECTRIC VEHICLE RECHARGING BAYS **16 SPACES** 225mm Ø LENGTH 60.2m MAX GULLY SPACING 27.5m (TAKEN FROM LEFT HAND SIDE DUE TO LIMITATIONS IN SURFACE DATA HERE) REFURBISHMENT AND EXTENSION OF EXISTING CAR PARK BY 50 SPACES. REFURBISHMENT INCLUDES DRINKING WATER STATIONS, PUBLIC LIGHTING, EV CHARGING POINTS, BIKE PARKING, WASTE COLLECTION, SEATING AND CCTV. INDICATIVE DRAINAGE LAYOUT SHOWN CONNECTING TO EXISTING ROAD DRAINAGE NETWORK. CONSENT TO DISCHARGE WILL BE REQUIRED.

PROJECT

BLESSINGTON eGREENWAY

CONSULTANT

AECOM DOUGLAS BUSINESS CENTRE CARRIGALINE ROAD DOUGLAS CORK Tel: +353 (0)21 436 5006 www.aecom.com

NOTES

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEERING DRAWINGS, ANY DISCREPANCIES, ERRORS OR OMISSIONS TO BE BROUGHT TO THE ATTENTION OF THE EMPLOYER.
- ALL DIMENSIONS TO BE CHECKED BY THE CONTRACTOR ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- EMPLOYER'S REPRESENTATIVE TO BE INFORMED BY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO THE COMMENCEMENT OF WORKS ON SIT
- . DIMENSIONS OF ALL BOUNDARIES AND ADJOINING ROADS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 5. DO NOT SCALE, ALL MEASUREMENTS AND COORDINATES TO BE CHECKED ON SITE
- 6. EXISTING FENCE LINES ARE INDICATIVE AND ARE TO BE CONFIRMED ON SITE. EXISTING FENCING IS TO BE REVIEWED ON SITE AND REPLACED WHERE REQUIRED
- EMERGENCY ACCESS POINTS ARE TO BE CLOSED OFF WITH DEMOUNTABLE BOLLARDS. KEYS TO BE HANDED OVER TO THE OVERSEEING ORGANISATION.
- 8. EGREENWAY DRAINAGE IS TO BE OVER THE EDGE DRAINAGE

ISSUE/REVISION

Α	14/12/2023	FIRST ISSUE
I/R	DATE	DESCRIPTION
	D	AECOM RAFT

PROJECT NUMBER

60617025

SHEET TITLE

PLAN AND PROFILE LACKEN

SHEET 18 OF 18

SHEET NUMBER

A.2 Appendix A2 - Baltyboys (Sheet 1) Drainage Layout Drawing

BALTYBOYS CAR PARK

MAXIMUM GULLY SPACING 17 GULLY .67m.

1050mm Ø

2250mm Ø M.H.

1200mm & M.H.

LENGTH 43.3m

2250mm & M.H.

- 300mm Ø

LENGTH 69.3m

REFURBISHMENT OF EXISTING CAR PARK. REFURBISHMENT INCLUDES DRINKING WATER STATIONS, TOILETS, EV CHARC POINTS, BIKE PARKING, WASTE COLLECTION, SEATING AND

* * * * * * * * * * *

 $\boldsymbol{\mathcal{O}}$

225mm Ø LENGTH 14.2m *

1 + + + + + + + + + + + +

PROJECT

BLESSINGTON eGREENWAY

CONSULTANT

AECOM DOUGLAS BUSINESS CENTRE CARRIGALINE ROAD DOUGLAS CORK Tel: +353 (0)21 436 5006 www.aecom.com

NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEERING DRAWINGS, ANY DISCREPANCIES, ERRORS OR OMISSIONS TO BE BROUGHT TO THE ATTENTION OF THE EMPLOYER.
- ALL DIMENSIONS TO BE CHECKED BY THE CONTRACTOR ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 3. EMPLOYER'S REPRESENTATIVE TO BE INFORMED BY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO THE COMMENCEMENT OF WORKS ON SITE
- 4. DIMENSIONS OF ALL BOUNDARIES AND ADJOINING ROADS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 5. DO NOT SCALE, ALL MEASUREMENTS AND COORDINATES TO BE CHECKED ON SITE
- 6. EXISTING FENCE LINES ARE INDICATIVE AND ARE TO BE CONFIRMED ON SITE. EXISTING FENCING IS TO BE REVIEWED ON SITE AND REPLACED WHERE REQUIRED
- . EMERGENCY ACCESS POINTS ARE TO BE CLOSED OFF WITH DEMOUNTABLE BOLLARDS. KEYS TO BE HANDED OVER TO THE OVERSEEING ORGANISATION.
- 8. EGREENWAY DRAINAGE IS TO BE OVER THE EDGE DRAINAGE

ISSUE/REVISION

PROJECT NUMBER

60617025

SHEET TITLE

DRAINAGE LAYOUT BALTYBOYS SHEET 1 OF 17

SHEET NUMBER

A.3 Appendix A3 - Baltyboys (Sheet 17) Drainage Layout Drawing

Filename: \\EU.AEC(Last savec

PROJECT

BLESSINGTON eGREENWAY

CONSULTANT

AECOM DOUGLAS BUSINESS CENTRE CARRIGALINE ROAD DOUGLAS CORK Tel: +353 (0)21 436 5006 www.aecom.com

NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEERING DRAWINGS, ANY DISCREPANCIES, ERRORS OR OMISSIONS TO BE BROUGHT TO THE ATTENTION OF THE EMPLOYER.
- 2. ALL DIMENSIONS TO BE CHECKED BY THE CONTRACTOR ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 3. EMPLOYER'S REPRESENTATIVE TO BE INFORMED BY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO THE COMMENCEMENT OF WORKS ON SITE.
- 4. DIMENSIONS OF ALL BOUNDARIES AND ADJOINING ROADS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 5. DO NOT SCALE, ALL MEASUREMENTS AND COORDINATES TO BE CHECKED ON SITE.
- 6. EXISTING FENCE LINES ARE INDICATIVE AND ARE TO BE CONFIRMED ON SITE. EXISTING FENCING IS TO BE REVIEWED ON SITE AND REPLACED WHERE REQUIRED
- 7. EMERGENCY ACCESS POINTS ARE TO BE CLOSED OFF WITH DEMOUNTABLE BOLLARDS. KEYS TO BE HANDED OVER TO THE OVERSEEING ORGANISATION.
- 8. EGREENWAY DRAINAGE IS TO BE OVER THE EDGE DRAINAGE

ISSUE/REVISION

A	14/12/2023	FIRST ISSUE
I/R	DATE	DESCRIPTION
	D	AECOM RAFT

PROJECT NUMBER

60617025

SHEET TITLE

DRAINAGE LAYOUT BALTYBOYS SHEET 17 OF 17

SHEET NUMBER

A.4 Appendix A4 - Valleymount Drainage Layout Drawing

PROJECT

BLESSINGTON eGREENWAY

CONSULTANT

AECOM DOUGLAS BUSINESS CENTRE CARRIGALINE ROAD DOUGLAS CORK Tel: +353 (0)21 436 5006 www.aecom.com

NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEERING DRAWINGS, ANY DISCREPANCIES, ERRORS OR OMISSIONS TO BE BROUGHT TO THE ATTENTION OF THE EMPLOYER.
- 2. ALL DIMENSIONS TO BE CHECKED BY THE CONTRACTOR ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 3. EMPLOYER'S REPRESENTATIVE TO BE INFORMED BY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO THE COMMENCEMENT OF WORKS ON SITE.
- 4. DIMENSIONS OF ALL BOUNDARIES AND ADJOINING ROADS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 5. DO NOT SCALE, ALL MEASUREMENTS AND COORDINATES TO BE CHECKED ON SITE.
- 6. EXISTING FENCE LINES ARE INDICATIVE AND ARE TO BE CONFIRMED ON SITE. EXISTING FENCING IS TO BE REVIEWED ON SITE AND REPLACED WHERE REQUIRED
- EMERGENCY ACCESS POINTS ARE TO BE CLOSED OFF WITH DEMOUNTABLE BOLLARDS. KEYS TO BE HANDED OVER TO THE OVERSEEING ORGANISATION.
- 8. EGREENWAY DRAINAGE IS TO BE OVER THE EDGE DRAINAGE

ISSUE/REVISION

A 14/12/2023 F	IRST ISSUE
I/R DATE D	ESCRIPTION
DF	AECOM RAFT

PROJECT NUMBER

60617025

SHEET TITLE

DRAINAGE LAYOUT VALLEYMOUNT SHEET 1 OF 15

SHEET NUMBER

A.5 Appendix A4 – Russeltown Drainage Layout Drawing

Filename: \\EU.AECOMNET.COM\EMIA\UK\\IEDBL2\JOBS\SERVER - OTHER HIGHWAYS & TRAFFIC PROJECTS\PR-447455_BLESSINGTON_GREENWAY\900_CAD_GIS\910_CAD\20-SHEETS\BLESSINGTON\60617025_SHT_BLGWY_141_BLESSINGTON_PC_DRAINAGESFR01 Last saved by: FAIRS Last Plotted: 2024-01-15

PROJECT

BLESSINGTON eGREENWAY

CONSULTANT

AECOM DOUGLAS BUSINESS CENTRE CARRIGALINE ROAD DOUGLAS CORK Tel: +353 (0)21 436 5006 www.aecom.com

NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEERING DRAWINGS, ANY DISCREPANCIES, ERRORS OR OMISSIONS TO BE BROUGHT TO THE ATTENTION OF THE EMPLOYER.
- 2. ALL DIMENSIONS TO BE CHECKED BY THE CONTRACTOR ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 3. EMPLOYER'S REPRESENTATIVE TO BE INFORMED BY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO THE COMMENCEMENT OF WORKS ON SITE.
- 4. DIMENSIONS OF ALL BOUNDARIES AND ADJOINING ROADS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS.
- 5. DO NOT SCALE, ALL MEASUREMENTS AND COORDINATES TO BE CHECKED ON SITE.
- 6. EXISTING FENCE LINES ARE INDICATIVE AND ARE TO BE CONFIRMED ON SITE. EXISTING FENCING IS TO BE REVIEWED ON SITE AND REPLACED WHERE REQUIRED
- 7. EMERGENCY ACCESS POINTS ARE TO BE CLOSED OFF WITH DEMOUNTABLE BOLLARDS. KEYS TO BE HANDED OVER TO THE OVERSEEING ORGANISATION.
- 8. EGREENWAY DRAINAGE IS TO BE OVER THE EDGE DRAINAGE

ISSUE/REVISION

Α	10/01/2024	FIRST ISSUE
I/R	DATE	DESCRIPTION

PROJECT NUMBER

60617025

SHEET TITLE

DRAINAGE LAYOUT RUSSELTOWN CAR PARK SHEET 5 OF 24

SHEET NUMBER

Number:	<documentcopy></documentcopy>	Copies to:	<copy 1="" recipient=""></copy>
			<copy 2="" recipient=""></copy>
			<copy 3="" recipient=""></copy>

